Kamis, 12 Desember 2013

Contoh Soal bangun Ruang sisi Lengkung

1.    Sebuah tabung memiliki diameter 7 cm, tinggi 4 cm. Jika \pi = \frac{22}{7} hitunglah :
a.   Volume tabung
b.   Luas selimut tabung
c.   Luas alas tabung
d.   Luas tutup tabung
e.   Luas sisi tabung
Jawab : A. Volume tabung = Luas alas x Tinggi
  \begin{align*}               V &= \pi r^2 \times t \\                 &= \frac{22}{7} \times {\left(\frac{7}{2}\right)}^2 \times 4 \\                 &= \frac{22}{\cancel{7}} \times \frac{\cancel{7}}{\cancel{2}} \times \frac{7}{\cancel{2}} \cdot \cancel{4} \\                 &= 22 \times 7 \\                 &= 154 \: cm^3            \end{align*}
B.  Luas selimut tabung = Keliling alas x Tinggi
  \begin{align*}               \text{Luas selimut tabung} &= 2 \pi r \times t \\               &= 2 \times \frac{22}{7} \times \frac{7}{2} \times 4 \\               &= \cancel{2} \times \frac{22}{\cancel{7}} \times \frac{\cancel{7}}{\cancel{2}} \times 4 \\               &= 22 \times 4 \\               &= 88 \: cm^2            \end{align*}
C.  Luas alas tabung = Luas lingkaran\begin{align*}                \text{Luas alas tabung} &= \pi r^2 \\                &= \frac{22}{7} \times {\left(\frac{7}{2}\right)}^2 \\                &= \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \\                &= \frac{\cancelto{11}{22}}{\cancel{7}} \times \frac{\cancel{7}}{\cancelto{1}{2}} \times \frac{7}{2} \\                &= 11 \times \frac{7}{2} \\                &= \frac{77}{2} \\                &= 38,5 \: cm^2             \end{align*}n  
D.  Luas tutup tabung = Luas alas tabung = 38,5 \: cm^2
E.  Luas sisi tabung = Luas selimut + Luas alas + Luas tutup
  \begin{align*}                \text{Luas sisi tabung} &= 88 + 38,5 + 38,5 \\                &= 165 \: cm^2             \end{align*}
2.  Sebuah tabung mempunyai diameter yang sama dengan tingginya. Jika luas selimut tabung tersebut adalah 78,5 \: cm^2. Jika \pi = 3,14, berapakah volume tabung tersebut ?

Jawab :Karena diameter = tinggi, maka misalkan diameter = tinggi = x.
  \begin{align*}         \text{Luas selimut tabung} &= 2 \pi r \times t \\         78,5 &= \pi \times 2r \times t \\         78,5 &= \pi \times d \times t \\         78,5 &= \pi \cdot x \cdot x \\          78,5 &= \pi \cdot x^2 \\          \frac{78,5}{\pi} &= x^2 \\         \frac{78,5}{3,14} &= x^2 \\         25 &= x^2 \\          x &= 5       \end{align*}
Jadi diameter tabung adalah 5 cm, sehingga jari-jari tabung adalah 2,5 cm. Lalu tinggi tabung juga 5 cm.
  \begin{align*}           V &= \pi r^2 \times t \\             &= \pi \times (2,5)^2 \times 5 \\             &= \pi \times 6,25 \times 5 \\             &= \pi \times 31,25 \\             &= 3,14 \times 31,25 \\             &= 98,125        \end{align*}
Jadi volume tabung tersebut adalah 98,125 \: cm^3
3.  Sebuah kerucut mempunyai diameter 10 cm dan tinggi 12 cm. Jika \pi = 3,14hitunglah :
a.   Volume kerucut
b.   Luas selimut kerucut
c.   Luas alas kerucut
d.   Luas sisi kerucut
A.Volume kerucut = \frac{1}{3} x Luas alas x Tinggi
  \begin{align*}               V &= \frac{1}{3} \times \pi r^2 \times t \\                 &= \frac{1}{3} \times \pi \times 5^2 \times 12 \\                 &= \frac{1}{\cancel{3}} \times \pi \times 25 \times \cancelto{4}{12} \\                 &= 25 \times 4 \times \pi \\                 &= 100 \pi \\                 &= 100 \times 3,14 \\                 &= 314 \: cm^2            \end{align*}
B.  Luas selimut kerucut = \pi r \: s. Kita harus terlebih dahulu mencari s (garis pelukis) dengan rumus phytagoras.
  \begin{align*}              s^2 &= r^2 + t^2 \\              s^2 &= 5^2 + 12^2 \\              s^2 &= 25 + 144 \\              s^2 &= 169 \\              s &= \sqrt{169} \\              s &= 13            \end{align*}
Editing By : Illa Tahira A
  \begin{align*}               \text{Luas selimut kerucut} &= \pi r \: s \\               &= \pi \times 5 \times 13 \\               &= 65 \pi \\               &= 65 \times 3,14 \\               &= 204,1 \: cm^2            \end{align*}
C.  Luas alas kerucut = Luas lingkaran
  \begin{align*}                \text{Luas alas kerucut} &= \pi r^2 \\                &= \pi \times 5^2 \\                &= 25 \pi \\                               &= 25 \times 3,14 \\                &= 78,5 \: cm^2             \end{align*}
D.  Luas sisi kerucut = Luas selimut + Luas alas
  \begin{align*}                \text{Luas sisi kerucut} &= 204,1 + 78,5 \\                &= 282,6 \: cm^2             \end{align*}
4.  Sebuah kerucut terpancung seperti gambar di bawah ini. Jari-jari alas adalah 2 kali jari-jari tutup, dan tinggi kerucut besar 2 kali tinggi kerucut kecil. Jika jari-jari alas 14 cm dan tinggi bangun 21 cm, berapakah volume bangun tersebut?
kerucut terpancung
Volume bangun = Volume kerucut besar – Volume kerucut kecil
  \begin{align*}            V &= \frac{1}{3} \pi \: r_2^2 \: t_2 - \frac{1}{3} \pi \: r_1^2 \: t_1 \\              &= \frac{1}{3} \pi \times 14^2 \times 42 - \frac{1}{3} \pi \times 7^2 \times 21 \\              &= \frac{1}{\cancel{3}} \pi \times 14^2 \times \cancelto{14}{42} - \frac{1}{\cancel{3}} \pi \times 7^2 \times \cancelto{7}{21} \\              &= 14^3 \pi - 7^3 \pi \\              &= (14^3 - 7^3) \pi \\              &= (2744 - 343) \pi \\              &= 2401 \pi \\              &= 2401 \times \frac{22}{7} \\              &= 7546 \: cm^3        \end{align*}
5.  Sebuah kerucut dibuat dari selembar karton berbentuk juring lingkaran dengan sudut pusat 288 derajat dan jari-jari 10 cm. Hitunglah volume kerucut yang terbentuk ! (gunakan \pi = 3,14 )
juring

Untuk kerucut yang dibuat dari juring, maka luas juring akan sama dengan luas selimut kerucut, dan jari-jari juring akan menjadi garis pelukis kerucut.
  \begin{align*}          \text{Luas juring karton} &= \frac{\text{sudut}}{360^o} \times \pi \: r^2 \\          &= \frac{288}{360} \times \pi \times 10^2 \\          &= 0.8 \times 100 \pi \\          &= 80 \pi \: cm^2        \end{align*}
Luas selimut kerucut = Luas juring karton = 80 \pi \: cm^2.
Garis pelukis kerucut = Jari-jari juring = 10 cm.
  \begin{align*}          \text{Luas Selimut Kerucut} &= \pi \: r \: s \\          80 \pi &= \pi \: r \: 10 \\          80 \cancel{\pi} &= \cancel{\pi} \: r \: 10 \\          80 &= 10r \\           r &= 8 \: cm         \end{align*}
Berikutnya cari tinggi kerucut menggunakan rumus phytagoras
  \begin{align*}          t^2 &= s^2 - r^2 \\           &= 10^2 - 8^2 \\           &= 100 - 64 \\           &= 36 \\          t &= \sqrt{36} \\            &= 6 \: cm        \end{align*}
Setelah mendapat tinggi, baru kita bisa menghitung volume kerucut.
  \begin{align*}          V &= \frac{1}{3} \times \pi r^2 \times t \\            &= \frac{1}{3} \times \pi \times 8^2 \times 6 \\            &= \frac{1}{\cancel{3}} \times \pi \times 8^2 \times \cancelto{2}{6} \\            &= \pi \times 64 \times 2 \\            &= 128 \pi \\            &= 401,92 \: cm^3         \end{align*}
6.  Sebuah bola basket mempunyai diameter 20 cm. Hitunglah :
a.   Volume bola basket
b.   Luas sisi bola basket
Jawab : A. Volume bola basket = \frac{4}{3} \pi r^3, dimana jari-jari bola = 10 cm.
  \begin{align*}                V &= \frac{4}{3} \times \pi \times 10^3 \\                  &= \frac{4}{3} \times \pi \times 1000 \\                  &= \frac{4000}{3} \pi \\                  &= \frac{4000}{3} \times 3,14 \\                  &= 4.186,67 \: cm^3             \end{align*}
B.  Luas sisi bola basket = 4 \pi r^2
  \begin{align*}                L &= 4 \times \pi \times 10^2 \\                  &= 400 \pi \\                  &= 400 \times 3,14 \\                  &= 1256 \: cm^2             \end{align*}
7.  Sebuah benda padat berbentuk setengah bola mempunyai diameter 10 cm. Hitunglah luas permukaan benda tersebut !
Luas permukaan benda = Luas sisi setengah bola + Luas lingkaran (Luas penutup setengah bola)
  \begin{align*}           L &= \frac{1}{2} \times 4 \pi r^2 + \pi r^2 \\             &= 2 \pi r^2 + \pi r^2 \\             &= 3 \pi r^2 \\             &= 3 \times 3,14 \times 5^2 \\             &= 3 \times 3,14 \times 25 \\             &= 235,5 \: cm^2        \end{align*}
8.  Perhatikan gambar di bawah ini !
tabung-bola
Sebuah tabung dengan diameter 20 cm berisi air setengah penuh. Jika sebuah bola berdiameter 6 cm dimasukkan ke dalam tabung tersebut, berapakah tinggi air yang naik?
Cari dulu volume bola.
  \begin{align*}           V_{bola} &= \frac{4}{3} \pi r^3 \\           &= \frac{4}{3} \times \pi \times 3^3 \\           &= 4 \times \pi \times 3^2 \\           &= 36 \pi \: cm^3        \end{align*}
Volume air yang naik adalah sama dengan volume bola. Cari tinggi air yang naik dengan menggunakan volume air yang naik pada tabung.
  \begin{align*}           V_{air} &= \pi r^2 t \\           36 \pi &= \pi \times 10^2 \times t \\           36 \cancel{\pi} &= \cancel{\pi} \times 100 \times t \\          36 &= 100 t \\           t &= \frac{36}{100} \\           t &= 0,36 \: cm        \end{align*}
Jadi tinggi air yang naik adalah 0,36 cm.
9.  Sebuah bandul terdiri atas sebuah tabung dan setengah bola dengan jari-jari 6 cm seperti gambar di bawah.
bandul
Jika tinggi seluruhnya 15 cm dan \pi = \frac{22}{7}. Hitunglah volume bandul tersebut

Tinggi kerucut = Tinggi seluruhnya – Jari-jari bola
  \begin{align*}          t &= 15 \: cm - 6 \: cm \\            &= 9 \: cm        \end{align*}
Volume bandul = Volume kerucut + Volume setengah bola
  \begin{align*}           V &= \frac{1}{3} \pi r^2 t + \frac{1}{2} \times \frac{4}{3} \pi r^3 \\             &= \frac{1}{3} \times \pi \times 6^2 \times 9 + \frac{2}{3} \times \pi \times 6^3 \\             &= \frac{1}{\cancel{3}} \times \pi \times 6^2 \times \cancelto{3}{9} + \frac{2}{\cancel{3}} \times \pi \times \cancelto{72}{6^3} \\              &= \pi \times 36 \times 3 + 2 \times \pi \times 72 \\             &= 108 \pi + 144 \pi \\             &= 252 \pi \\             &= 252 \times \frac{22}{7} \\             &= 36 \times 22 \\             &= 792 \: cm^3        \end{align*}
10. Gambar dibawah ini merupakan tabung dengan bagian atas dan bawah berupa setengah bola.
tabung-2bola
Jika diameter tabung 8,4 cm dan tinggi tabung 20 cm dan \pi = \frac{22}{7}, tentukan luas permukaan tabung yang diarsir !

Luas tabung yang diarsir = Luas selimut tabung – 2 Luas setengah bola (tanpa tutup)
  \begin{align*}          L &= \pi \: d \: t - 2 \times \frac{1}{2} \times 4 \pi r^2 \\            &= \pi \times 8,4 \times 20 - 4 \times \pi \times (4,2)^2 \\            &= 168 \pi - 4 \times \pi \times 17,64 \\            &= 168 \pi - 70,56 \pi \\            &= 97,44 \pi \\            &= 97,44 \times \frac{22}{7} \\            &= 13,92 \times 22 \\            &= 306,24 \: cm^2        \end{align*}



Tidak ada komentar:

Posting Komentar